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CORRELATION BY THE HYPERSONIC SIMILARITY RULE OF PRESSURE
DISTRIBUTIONS AND WAVE DRAGS FOR MINIMUM-DRAG NOSE
SHAPES AT ZERO ANGLE OF ATTACK

By Leland H. Jorgensen
SUMMARY

The hypersonic similarity rule has been used to correlate pressure
distr;bu@ions and wave drags for minimum-drag nose shapes derived by
von Kaerman and Newton. The pressure distributions and wave drags have
been computed by Van Dyke's second-order theory for various Mach number
and fineness ratio combinations resulting in values of the similarity
parameter (Mach number divided by fineness ratio);between 0.4 and 1.0.
The computed resulte, presented as a function of the similarity perameter,
have been confirmed by comparison with avalleble experimental data. From
analysis of the results, simple expressions for pressure distribution and
wave dreg in terms of the hypersonic similarity paremeter have been
developed.

Wave=-drag results for both the Kdrmén and Newtonian shapes are com-
pared with each other and with results for cones and circular-arc tangent
ogiveg. ;Ehe Newtonian shapes have about 10 percent less wave drag than
the Kerman shapes for values of the similarity parameter of about 0.8.
They also have 20 to 25 percent less wave drag than tangent oglves and
15 to 20 percent less wave drag than cones.

INTRODUCTION

The hypersonic similarity rule, derived by Tsien (ref. 1) and Hayes
(ref. 2) provides the aerodynamicist with a practical tool which greatly
reduces the work necessary to determine the aerodynemic properties of
related bodies of revolution at supersonic Mach numbers and zero incidence.
According to this rule, the hypersonic flow patterns about slender,
pointed, affinely related bodies are similar, provided the values of the
similarity parameter K (Mach number divided by fineness ratio) are equal.
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Although the statement of the rule would indicate that ite applicability
might be limited to high supersonic Mech numbers and very slender bodies,
recent studies (refs. 3 and 4) have shown the rule to be valid for cor-
relating pressure distributions end wave drags for cones and tangent
ogives, even for Mach numbers as low as approximately 1.5 and fineness
ratios as small as 2. According to references 5 and 6, this rule has
been shown to be applicable even for correlating wave drags of slightly
blunt bodies.

With the assumption, therefore, that the hypersonic similarity rule
is a valld tool for correlating results, an investigation was undertaken
to study the pressure-distribution and wave-drag characteristics of two
minimum-dreg nose shapes, one derived by von K4rmdn (ref. 7) and the other
by Newton (refs. 8 and 9). These shapes asre of interest since both were
theoretically optimized for minimum drag for the conditions of given
length and diameter, and yet their profiles differ appreclably due to the
diverse assumptions and pressure-velocity relationships employed in their
derivations. Due to the use of slender-body theory in the derivation of
the Kdrmén shape, one might expect the shape to have minimum drag only
for high fineness ratios and low supersonic Mach numbers (or low values
of K}). In contrast, the Newtonian shape derived by use of Newton's law
of resistance might be expected to exhibit less drag than the Kérmén
shape only at high supersonic Mach numbers (or high values of K)}. Since,
by the hypersonic similarity rule, Mach number and fineness ratic can be
combined into a single parameter, the wave drags of these shapes may be
conveniently compared on a plot showing the variation of the wave-~drag
function with the similarity parameter. Such a plot for comparing the
wave drag of these shapes was made for a previous investigation (ref. 5)
but has been extended and more completely analyzed for this investigation.
Wave-drag comparisons have been made over a similarity-parameter range
of from about 0.4 to 1.0. Since only a small amount of experimentel data
exists for the Kérmén and Newtonian shapes, pressure-distribution and
?ave-drag values for this study were computed using second-order theory

ref. 10).

In the course of studying the pressure-distribution and wave-drag
curves, 1t was found that simple equations for pressure distribution and
wave drag in terms of the similarity parameter could be written for each
shape, thus enabling rapid calculstion of these characteristics for many
practical combinations of Mach number and fineness ratio. The purpose
of this report, in addition to presenting and comparing pressgure-
distribution and wave-drag characteristics for the Kérmén and Newtonian
nose shapes, is to present these simple equations and show the manner
in which they were determined.
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SYMBOLS

base area of nose shape

pressure~ratio intercepts at x/l = 1 from the pressure-ratio

curves for the Kdrmen shapes, 2
o/x/1 =1

pressure-coefficient intercepts at x/Z = 1 from the pressure-

b-p
coefficient curves for the Newtonian shapes, ( °>
Po /x/1 =1

wave-drag coefficient, Y2VS dreg

QA
bage diameter
Mo
gimilerity parameter, i7€

nose length
nose fineness ratio
free-gstream Mach number

slope pressure-ratio curves for the Kérmén shapes,

d logio(®/Po)
d logio(x/1)

slope of pressure-coefficient curves for the Newtonian shapes,
d lOglO[(P = Po)/Po]
d log; o(x/1)

local static pressure
free-stream static pressure
free-stream dynamic pressure
local radius

base radius

longitudinal coordinate measured from vertex
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Xa longitudinal distance from vertex of basic nose profile to
point of tangency of assumed conical tip with basic nose
profile K
6 cone half angle
¥ ratio of specific heats of air, taken as 1.k40
oy 2
¢ cos (}_- 3

SCOFE AND PROCEDURE

Profiles

Nondimensionel plots of the profiles of the Keyrman, the true Newtonian,
and an approximated Newbtonian minimum-drag nose shape are compared in
figure 1. Although there is considerable difference between the Kerman
and the true Newtonian shape, there is very little difference between the
true Newtonian and the approximated Newtonien, or 3/h-power shape, which
has been used in previous studies (refs. 5, 6, 9, and 11). Since the
defining equation for the approximated shape offers great simplification
in the calculation of pressure distribution and wave drag, it hes been
used in preference to the unwieldly true Newtonian expression (given in
refs. 8 and 9). The profile equations used for this investigation, in
the notation of the present report, are as follows:

For the Kérmén shapes,

r
r= b

1
= - = gin 2 1
Vel A et (1)

where

l

r=r, <%;f/4 (2)

Theoretical Pressure-Distribution and Wave-Drag Calculations

(P=COS-1< _2_X

For the Newtonian shapes,

Van Dyke's second-order theory (ref. 10) was used to calculate pres-
sure distributions and wave drags for the nose shapes considered. For

MR T AT
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similarity parameters between 0.4 and 1.0, calculations were made for
the Mach number and fineness ratio combinations listed in the following
tables:t

Kérmdn shapes Newtonian shapes

K Mo 1/a xc/1 K Mo 1/a Xa/1
0.h29 3 T 0.024 0.429 3 T 0.038
.500 1.5 3 .024 +500 1.5 3 .019
<500 1.5 3 .048 .500 1.5 3 .038
.600 3 5 .02k +500 1.5 3 076
.600 3 5 .048 .500 k.5 9 .038
667 2 3 .024 600 3 5 .038
.T50 2.25 3 .02k 667 2 3 .038
.857 2.57 3 .0L8 .750 5.25 7 .038
857 6 T .048 .857 6 T .038
.922 6.45 7 .048 1.000 3 3 .038
1.000 7 7 .038

The procedure followed in the calculations was that given in refer-
ence 10, wherein the approximate boundary conditions at the body surface
are used in the calculation of the perturbation velocities, and the exact
pregsure relationship is used to evaluate the pressure coefficients. The
theory is strictly applicable only for sharp-nosed bodies of revolution
in the Mach number range bounded by the Mach number for shock-wave detach-
ment and the Mach number at which the Mach cone is tangent to the nose
vertex.2 As both the Kirmin and Newtonian shapes have mathematically
infinite slopes at their vertices (yet for most practical purposes are
sharp), & small conical tip tangent to the true profile of each nose must
be assumed to enable use of the theory. To test the effect of this
assumed tip modification, pressure distributions were calculated for
Kérmén and Newtonian shapes with progressively shorter conical tips. The
results, shown in figure 2, indicate that the assumption of these conical
tips has little, if any, effect on the major portions of the pressure
distributions. However, to minimize any effect of nose tip modification
on pressure distribution, the point of tangency of the conical tip with
the true contour (x./1) was always taken at less than 5 percent of the
body length. If deslred the pressure coefficients which would exist
at the vertices (x/Z 0) of the blunt nose shapes could be computed by

LThe xc/Z values listed in the tables are the longitudinal distances
from the vertices of the basic shapes 1o the points of tangency of
conical tips assumed to permit solution with second-order theory.

2In order to use the tables of reference 10, the ratio of semivertex angle
to Mach angle must not be greater than 0.9k.
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the use of Rayleigh's pitot-tube equation. These calculations were
omitted for this investigetion, since the resulting pressure coefficients
would be functions of Mach number only and obviously could not satisfy
the hypersonic similsrity rule. However, even though the pressure coef-
ficients at the vertices are omitted and those very near the vertices
may be somewhat in error, the wave-drag results are affected very little
when the wave-drag equation,

Cp =2 U/“rb <z> f) rdr
Po ry2

is graphically integrated by plotting r(p-po)/po as a function of r,
and & smooth curve is faired to the origin.

RESULTS AND DISCUSSION

Pressure Distributions

Correlation and comparison with experiment.- In figures 3(a) and
(b) all the theoretical pressure-distribution results for the various
Mach number and fineness ratioc combinations considered have been plotted
with K as a parameter. These figures help substantiateé the assumption
of the validity and usefulness of the hypersonic similarity rule as a
tool for correlating pressure digtributions for the shapes considered.
The validity of the rule 1s demonstrated for several values of similarity
parameter K. For example, at K = O. 857 in figure 3(a), the pressure
distribution for a fineness ratio T Karman shape at Mach number 6 agrees
well with that for a fineness ratio 3 Karman shape at Mach number 2.57,
the computed points for each solution falling very close to the mean
faired curve. Likewise, in figure 3(b) additional checks are shown for
Newtonian shapes for similarity parameters of 0.5 and 1.0.

At K = 0.667 (Mg = 2, 1/d = 3) the thecFetical pressure-distribution
curves for both the Karmédn and Newtonian shapes have been verified by
the results of experimental pressure-distribution tests conducted in the
Ames 1- by 3-foot supersonic wind tunnel No. 1. The K = 0.667 curves
of figures 3(a) and 3(b) (with the computed theoretical points omitted)
are compared in figure 4 with the experimental results. The agreement
between the theoretical curves and the experimental polnts is excellent
and lends support to the use of second-order theory for this investigation.




NACA RM AS53F12 el 7

Analytical expressions for pressure distribution.- Analysis of the
data of figure 3 has revealed that for each family of nose shapes, a
gsimple equation masy be written for the variation of Pressure coeff1c1ent
with x/Z and K. When pressure ratlos p/po for the Karmén shapes
and pressure coefficients (p-po)/pO for the Newtonian shapes are plotted
as & function of x/l on logarithmic coordinates, the resulting curves
are linear over most of the nose length. (See fig. 5.) Exceptions to
this linearity exist only for values of x/l greater than about 0.7 for
the Karmén shapes and lesg than about 0.05 for both families of shapes.
The equations for the linear curves may be expressed in exponential form
as follows:

For the KArmén shapes,

= a<>2£>m (3)
() ®

where m and n represent the slopes of the curves shown in figures 5(a)
and 5(b), end a and b represent the intercepts at x/I = 1.0. From
plots of the variation of m and n with K (fig. 6(a)), it was found
that

For the Newtonian shapes,

m = =0.399 K + 0.065 (5)
and

-0.416 (6)

n

From logarithmic plots of the variation of & and b with K (fig. 6(b)),
it was also observed that

1.080 x°+°°3 (1)

®
]

and

b = 0.305 k€88 (8)

Thus, expressions for pressure coefficient as a function of x/l end K
mey be written as follows:

For the Kérmén shapes (0.05 <% <0.7),
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P - P ~0 +399 K 4+ 0085
— 9.2 _ 1= 1.080 go-0e3 (5) -1 (9)

For the Newtonian shapes® (0.05 <§<1.o),

=0 416
= 0.305 k1682 (%) (10)

At leagt within the similarity-paremeter limits investigated (and
for Mg's and l/d's of the order of those used herein), pressure-
distribution values for the Kdrmén and Newtonian nose shapes may be com-
puted from equations (9) and (10), respectively. Although equation (9)
is not applicable for x/l's greater than 0.7 for the Kérmén shapes, the
presgure distributions pest this point mey be estimated with the ald of
figure 3(a). The possibility that equation (10) for the Newtonian shapes
may be used to compute pressure distributions for even higher valuee of
K than one is intimated by the good agreement, shown later, between
computed wave-drag values and experimental results for K's to about 1l.7.

Wave Drag

Analytical expressions for wave drag.- The wave-drag coefficients
which were calculated from the theoretical pressure distributions of
figure 3 are presented in figure 7, which shows the variation of the
wave-drag function CD(qo/p ) with the similarity paremeter K. For both
the Kérmén and Newtonian shapes, curves have been faired through the com-
puted points. For the Kérmén shapes (fig. 7(a)), the variation of the
wave-drag function with the similarity parameter is linear (for the limits
of K investigated), and the resulting expression is

Cp 1;2 =0.6K-0.16 - (11)

o

For the Newtonian shapes (fig. 7(b)), the variation of the wave-drag func~-
tion with the similarity parameter is not lineasr but may be expressed by

q'O 1.883
Cp 5o = 0.422 K (12)

8Tt is of interest to note that this expression is of the same form as
(p- -Po /Po = 0.197 K?(x/l)'o's, which results from use of the Newtonian

pressure relationship for slender bodies, (p-po)/qo = o(dr/ax)=.
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This equation was analytically derived with the aid of the previously
developed pressure~coefficient expression for the Newtonlan shapes

(eq. (10)).

Comparison of theoretical and experimental wave-drag results.- In
figure 8 theoretical wave-drag curves resultlng from the use of equations
(11) and (12) are compared with wave-drag results obtained by subiracting
calculated values of skin-~friction drag from previously published experi-
mental foredrag data (refs. 5, 9, and 11). These foredrag data were
obtained from wind-tunnel tests of minimum-drag nose shapes of fineness
ratios 3 and 5 at Mach numbers between 1.4} and 5.00. Since for the
models tested the boundary-layer flow was laminar and the skin~friction
drag was generally a small portion of the foredreg, the skin-friction
drag, which has been subtracted from the published foredrag, was computed
by the Blasius formula for flat-plate incompressible boundary-layer flow.
Uge of a more refined method to include the effects of body shape and
compressibility wae not considered necessary.

In order to make drag comparisons over the complete similarity-
parameter range for which there is experimental data available, the
theoretical wave-drag curves (eqs. (11) and (12)) have been extended past
the K limits for which second-order-theory calculations have been made.
(Compare, e.g., figs. 7 and 8.) It is evident from figure 8 that, even
for these extended wvalues of K, there is good agreement between the
theoretical and experimentel wave-drag results, although there appears
to be gome scatter in the experimental data. Thus, it may be expected
that equations (ll) and (12) can be reliably used for the calculation of
wave drag for Kermsn snd Newtonian nose shapes within the X limits for
which experimental confirmation hes been shown (0.41<K<1.02 for Kdrmen
shapes and O.41<K<1.67 for Newtonian shapes). Without further investi-
gation, however, it would be inadvisable to use these equations for Mach
numbers less than about 1.5 and for fineness ratios less than about 3.

Wave-drag comparisons between Kérmén shapes, Newtonian shapes, cones,
and tangent ogives.- In figure 9 curves showing the variation of the
wave-drag function with the similarity parameter are compared for Kérmén
shapes, Newtonian shapes, cones, and circular-arc tangent ogives. The
drag curves for the Kérmén and Newtonian shepes are the same as those
shown in figure 8, and the drag curves for the cones and tangent ogives
are from references 3 and b, respectively. The drag curve for cones
(computed on the basig of the Taylor-Maccoll exact theory) and the drag
curve for tangent ogives (computed by the method of characteristics) have
both recently been experimentally verified (ref. 6).

As mentioned in the report introduction, the vave drag of a Newtonian
shape might be expected to be less than that of a Kérmén shape for high
values of K. The results of this investigation and of reference 5 show
that even for similarity parameters as low &8 0.5 the wave drag of a
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Newtonlian shape 15 less than that of a Kérmén shape. A designer con-~
fronted with the problem of choosing a nose shape for a given length

and diameter should, of course, weigh the wave-~drag savings which a
Newtonian'sh§pe may offer againat the 25 percent greater nose volume
which a Karman shape offers. Although for the similarity-parameter range
investigated the wave drag of a Newtonian shape is at most 10 percent
less than that of a Kdrmdn shape, it is 20 to 25 percent less than that
of a tangent ogive and 15 to 20 percent less than that of a cone.

CONCLUSIONS

The hypersonic gimilarity rule has been used to correlate pressure
distributions and wave drags for Kdrmén and Newtonian nose shapes over
the similarity-parameter range from about O.% to 1.0. An analysis of
the correlated results has led to the following conclusions:

l. For each family of shapes, simple equations for pressure distri-
bution and wave drag may be written:

For the Kédrmén shapes,

P - D, " -0.398 K + 0.065 x
——2 = 1.080 K°°°°° <7> -1 (0.05<T<0.7)
Py 1
and
Cp b . 0.6 X - 0.16
Po

For the Newtonian shapes,

P ~-D =0 .418
—2 = 0.305 xl-683 <§> (0.05<Z<1.0)
P, 1 1
and
0p =2 = 0.hop K69
PO

where p 1s local static pressure; Po and q, are free-stream static
and dynamic pressures, respectively; Cp 1s wave-drag coefficient based
on base area; K is the similarity parsmeter, M,/(1/d); and x/1 1is the
longitudinal coordinaste from the vertex divided by the nose length.

--ﬂiiiiiiﬁiiﬂigv
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2. The Newtonlan shapes heve less wave drag than the Kermdn shapes
of the same fineness ratio for values of similarity parameter between
0.5 and 1.0.

3. Both Kdrmén end Newtonian shapes have less wave drag than either
cones or circular-arc tangent oglves of the same fineness ratio, the wave
drag of a Newtonian shape being 20 to 25 percent less than that of a
tangent oglive and 15 to 20 percent less than that of a cone.

Ames Aeronasutical Lsboratory
Nationel Advisory Committee for Aeronsutics
Moffett Field, Calif., June 12, 1953
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